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Abstract

This paper investigates the asymptotic distribution of the recently-proposed contraction map-
ping (CM) method for frequency estimation. Given a finite sample composed of a sinusoidal
signal in additive noise, the CM method applies to the data a parametric filter that matches its
parameter with the first-order autocorrelation of the filtered noise. The CM estimator is defined
as the fixed-point of the parametrized first-order sample autocorrelation of the filtered data. In
this paper, it is proved that under appropriate conditions, the CM estimator is asymptotically
normal with a variance inversely related to the signal-to-noise ratio. A useful example of the

AR(2) filter is discussed in detail to illustrate the performance of the CM method.

Abbreviated Title: “CM Method for Frequency Estimation”
Key words and phrases: Frequency estimation, iterative filtering, normality, parametric

filter, spectrum analysis.






1 INTRODUCTION

The contraction mapping (CM) method is an iterative filtering approach for frequency estima-
tion on the basis of a noisy sample composed of a sinusoidal signal in additive noise (see He and
Kedem, 1990a; Yakowitz, 1991a; Kedem, 1990; Li and Kedem, 1991). On applying to the data
a parametric filter that satisfies the so-called fundamental property, i.e., the parameter of the
filter matches the first-order autocorrelation of the filtered noise, the CM estimator is obtained
by finding a fixed-point of the parametrized first-order sample autocorrelation of the filtered
data. In a recent work by Li and Kedem (1991), existence and strong consistency of the CM
estimator have been proved based on a general result concerning uniform strong consistency of
the parametrized sample autocovariances of the filtered data. It was shown (Li and Kedem,
1991) that under some regularity conditions on the filter and for sufficiently large sample size,
the first-order sample autocorrelation forms a contraction mapping in the vicinity of the true
frequency, and thus a unique fixed-point can be found with probability one by using standard
iterative procedures such as the fixed-point iteration (FPI). Furthermore, as the sample size
tends to infinity, the fixed-point constitutes a strongly consistent estimator of the frequency. In
this paper we shall show that the CM estimator is also asymptotically normal. We shall also
provide a further analysis of the AR(2) filter considered by Li and Kedem (1991), focusing on
its asymptotic variance and efficiency. As a special case of the CM method using an AR(2)
filter, Quinn and Fernandes (1988) showed that an efficiency as high as that of the nonlinear
least squares (NLS) estimator can be achieved in the limiting case as the bandwidth of the
general AR(2) filter shrinks toward zero. This, together with the results in this paper, shows
the flexibility and efficiency of the CM method for frequency estimation. A numerical example
is presented to support the theoretical analysis.

An entirely different proof of the strong consistency of the CM method has been given in
Kedem and Yakowitz (1991) using filtered zero-crossing counts (HOC).

This paper is arranged as follows. Section 2 briefly surﬁmarizes the CM method and some
asymptotic properties obtained by Li and Kedem (1991). In Section 3, general results are given
concerning the asymptotic normality of sample autocovariances in the case of a sinusoidal signal
in additive colored noise. These results generalize those of Mackisack and Poskitt (1989) (see

also Stoica et al., 1989) where the asymptotic normality was established only for white noise.



The asymptotic normality of the CM estimator is presented in Section 4 based on the general
results obtained in Section 3. Finally, in Section 4, the AR(2) filter is considered in detail as
an important example of the CM method. In this section, the asymptotic variance of the CM
estimator is derived explicitly for the AR(2) filter, and some numerical simulations are provided

to illustrate its performance.

2 THE CONTRACTION MAPPING METHOD

Consider the time series {y,} defined by
Yt 1= Peos(wot + ¢) + € (2.1)

where # > 0 and wg € (0,7) are constants, and {¢;} is a linear process of the form
e = Y ity (2.2)
3

with 3~ 14;] < oo, and {&;} being independent and identically distributed with mean zero and
variance ag . The phase ¢ of the sinusoid can be random or constant. For convenience, we assume
that ¢ is uniformly distributed on (—x, 7] and independent of {£:}. Under this assumption,
{y:} becomes wide-sense stationary with mean zero. The frequency estimation problem is to
estimate the unknown frequency wp based on a finite sample of {y;}.

Before summarizing the CM method, let us introduce some useful notations. Let L, be
a linear time-invariant causal filter with real-valued impulse response sequence {h;(a),j =

0,1,...}, where a € [a, @] with @ and @ being constants such that
-l <a<coswg<a<l.

Denote by H(w;a) the transfer function of £,, i.e.,

o0

H(w;a):= Zhj(a)e_ij‘”.
7=0
Let {y:(a)} and {e:()}, defined by
y(a) = i hi(a)y—; and €fa):= i hj(a)e—;,

7=0 7=0



be the outputs of the filter £, when applied to {y;} and {¢;}, respectively. Define

pila) = THHI)

to be the kth-order autocorrelation of {e;()}. _
Suppose in the sequel that £, is chosen such that for any a € [a,@], the following funda-

mental property is satisfied:

a = pi(a), (2.3)

that is, the parameter « of the filter matches the first-order autocorrelation of the filtered noise
{es(@)}. Under this assumption, the first-order autocorrelation of {y(«)}, denoted by p(a),

can be written as
p(c) = " + Ca)(a — o) (2.4)
where
o™ = coswy

is the parameter to be estimated, and where

1

=13 7(@)

is the so-called contraction factor and y(a) the signal-to-noise ratio (SNR) of {y:(a)}, i.e.,

_ B H (wo; )|?
1) = Sy
{ei(a)}
For convenience, let us define G(a) := 1 — C(«) (known as the gain factor), i.e., G(a) =

y(a)/{1+ v(a)}, then (2.4) can be rewritten as
a—pla) = Gla)(a - a). (2.5)

It is clear that if the filter £, captures the signal (i.e., if G(a) > 0, or, equivalently, C(a) < 1)
for all o in a neighborhood of a*, then a* would be the unique fized-point of the mapping
p(a) in that neighborhood. This gave rise to the idea of the CM method that estimates a* by

locating the fixed-point of an estimator of p(a).



The CM method can be summarized as follows. For a given sample {yo,¥1,---,Yn-1} Of

size n, let
t
gi(a) == Zhj(a)yt_j (t=0,1,...,n—1).
=0

be the filtered data. Take p(a), an estimator of p(«), to be, for instance,

pla) = 24 (2:6)
where
n—1 n—2
fola) :==n"1 Z §2(a) and Fy(a):=n"t Z Jer1(@) (). (2.7)
t=0 t=0

Then, use the so-called fixed-point iteration (FPI)
& = palmYy  (m=1,2,..) (2.8)

to find a fixed-point of p(a) in the vicinity of a*.
Assume now that {h;(a)} satisfies, in addition to (2.3), the following regularity conditions

in a closed subset A containing «* as an interior point:

(H1) There exist constants a; > 0 such that
o0
Zjaj < oo and |hj(a)| < a;j
7=0

forall 7 =0,1,...and all @ € A.

(H2) h(«a) exists and there are constants b; > 0 such that

> jbj < oo and |hi(a)| < b;

j=0

forall 7 =0,1,...and all @ € A.

Under these conditions, if C'(a*) < 1 (i.e, if the signal is captured by £, with a = «*) and
the sample size n is sufficiently large, it has been shown by Li and Kedem (1991) that almost
surely the mapping p(«) has a unique fixed-point, denoted by &, in a neighborhood of o*, and

the sequence {&%m)} generated by (2.8) converges monotonically to &, as m — oo, provided



(0)

the initial estimate &p ' is not too far from é&,. Moreover, the estimator &, converges almost

surely to o* and thus @, defined by
&y, 1= arccos &, = arccos p(éy, ) (2.9)

is strongly consistent for estimating wg. In the following, we refer to both &, and @, as the
CM estimator. The main purpose of this paper is to establish the asymptotic normality for &,

and w,.

3 ASYMPTOTIC NORMALITY OF SAMPLE AUTOCOVARIANCES

To investigate the asymptotic distribution of the CM estimator, we clearly need the asymptotic
distribution of the sample autocovariances defined by (2.7). For this purpose, let us first consider
the following general case.

Let {h;,j = 0,1,...} be the real-valued impulse response sequence of a linear causal filter

with 3° |h;| < 00, and let
H(w):= Z hje_ijw
—~

be its transfer function. For a given data set {yo,%1,...,¥Yn—1} Obtained from (2.1, define the

filtered data by
t
2 ::Zhjyt_j (t=0,1,...,n—1).
—

We would like to establish the asymptotic normality for the sample autocovariances

n—j—1

Pie=nt D Ak (1=0,1,...,9) (3.1)
t=0

where ¢ is a fixed integer with 0 < ¢ < n. For convenience, we assume that ¢ is a constant. As
will be seen later, this assumption can be eliminated without changing our results.
Note that #; is defined for a finite sample. For simplicity, let us first consider its counterpart

7; defined on the basis of an infinite sample by

n—1
S | § .
’l"] =n Zt-f—]zt
t=0



where 2, defined by

o0
2= Ry,
i=0

requires the entire history of the data {y:} up to time ¢. Using (2.1), 2 can be rewritten as

2y = Brcos(wot + ép) +

where

B ﬂlﬂ(w0)|, én = ¢ + arg{H(wo)},
Gt = Zh €—j ——Eﬂjgt —7s and Hj -—th%

The following lemmas provide some asymptotic properties of {7;}.

Lemma 3.1 Suppose that E(¢}) = kof < co. Then

T}L{gsn cov(F;, 7)) = hm n E{(7; — r;)(Fr — ri)} = vjr < 00

where

2
rj = % cos(woj) + 7‘§, TJC- = E((i45G),

and

o0

vig = 203 cos(wpj) cos(wok) Z 75 cos(woT)
T=—00
+ (k= 3)"5”"15 + Z (T$T5+J Kt T£+j7'§—k) ‘
T==00

ProoF. Using (3.2) and the trigonometric identity

cos(w — A) + cos(w + A)

COSW CoOS A =

2 b
7; can be written as
n—1
Fi=r;+n" Zw]t-l—ﬂh 2n)~ Zcos{w0(2t+])+2¢h}
t=0 =0

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)



where

Tjt := Briys cos(wot + o) + Brlscos{wo(t + 7) + dn} + (oG — 7'5'-

Note that E(zj;) = 0 and that for any j and ¢y,

n—1

Z cos{wo(2t + 1) + 2¢5} = O(1).

t=0

Therefore, (3.6) induces

n—1
E(F)=r;+0(n™') and 7 —r;=n"" Z zjt+O0(n™h).
t=0
It is readily seen from (3.8) that
nlim n cov(F;, Tr) = n]jm n E{(7; — r;)(7x — %)}

n—1 n—1
= lim n7! cov ijt,Zxkt .
n—>r00
t=0 t=0

Moreover, simple algebra shows that

n—1 n—1
n~ ! cov (Z 5t Z a:kt) =hLh+L+1;

t=0 t=0

where

3
|
—
3
|
-

I = [t [th—sﬂ'—k cos(wot + ¢p) cos(wos + Pr)

T
il
o
»
Il
o

+ Tt<—s+j cos(wot + ¢p) cos{wo(s + k) + ¢}
+ 7oy cos{en(t + 5) + a} cos(wos + ¢n)

+ rf_s cos{wo(t + j) + ¢n} cos{wo(s + k) + ¢h}]

= N+ T+ T35+ Ty,

n—1n—1

I, := ppnt Z Z[c(t — s+ 7,k)cos(wot + ¢p) + c(t — s, k) cos{wo(t + j) + én}

t=0 s=0

+ (s —t + k,7) cos(wos + ¢r) + c(s — 1, j) cos{wo(s + k) + ¢r}],

n—1 n—1
Iz := n7'cov (Z Gttt Z Ct+kCt) )

i=0 t=0

and

c(j, k) == E(CraiCearle)

7

(3.7)

(3.8)



is the third-order cumulant of {(;}. Using (3.5) and the substitution 7 := ¢ — s, Ty can be

written as

ﬂ}% w— C
hi=% 2 Tri-k
I7|<n—1

(1 — J—;—;-') cos(woT) + % Z cos{wo(2t — 7) + 2¢1}

teD

where D := {t : max(0,7) < t < min(n — 1,7 + n — 1)}. Since 3 |r¢| < 0o and

n~? Z cos{wo(2t —7) + 2¢p} — 0  asn — oo
teD

for any 7, bounded convergence theorem gives

2 00 2 o
Ty — % Z r§,+j_k cos(woT) = % Z 7S cos{wo(T — j + k)}.

T=—00 T=—00

Similarly, we obtain

2 oo
Ty, — %7___2_:00 7S cos{wo(T — j — k)}
B ¢ :
T3 — > Z rycos{wo(T+ 7+ k)}
Br o ¢ :
Ty — £y Z recos{wo(T+ 75— k)}.

Combining these together yields

I, — 283 cos(woj) cos(wok) Z 75 cos(wor).

T=—00

In addition, since Y |e(7 + 7, k)| < oo for any fixed j and k, an analogous argument leads to

I — 0. Finally, Proposition 7.3.1 (Brockwell and Davis, 1987) gives

[ee]
I— (k=3)r$ri+ (7"$7’$+j—k + r$+j7'$—k) -

T=—00
The assertion is thus proved upon combining these results. &
Lemma 3.2 Under the same assumption as Lemma 3.1, {nY/2(#;—r;),j = 0,...,q} are asymp-
totically jointly normal with mean zero and covariance matrizc 'V = (?ij)g',kzo, where vk is

defined by (3.4).



Proor. Using the Cramér-Wold device (Brockwell and Davis, 1987, Proposition 6.3.1), we only
need to show that for any {A;,5=0,...,¢} # {0},

g
nt/? Z Aj(7; —r;) = N(0,v)  in distribution,
i=0
where v 1= 373" AjArv;r > 0. From (3.8), it suffices to show that
n—1
n1/? Z z; — N(0,v)  in distribution, (3.9)
t=0

where z; := 7 A;zj¢, and zj; is defined by (3.7). If the sequence {y;} given by (3.3) has a
finite length, i.e., if p; = 0 for all |j| > m with m being a positive integer, then, after some
straightforward manipulations similar to the proof of Theorem 6.7 (Hall and Heyde, 1980, pp.

192), we can write

n—1 n
n/? Z zy =2 ZMt + 0,(1)
t=0 t=1

where

2m+4-q q

M; = B+ Z AT(&tét—T - 0-{257')) Ay = Z /\jAjTa
T7=0 7=0

q
By = > A > pkBulcos{wo(t + k + §) + ¢} + cos{wo(t + k — 5) + ¢n}],
7=0 k
Ajo = r?-/a?, and A, := (’I']C-+T + TJC-_T)/ag, for 7 £ 0.

It is easy to see that {M;} are martingale differences with respect to the o-fields F; generated
by {&;,j < t} for t > 0. Direct computations, followed by an application of the law of large
numbers, yield

n_lvr? i=n"! Z E(Mfl]:t_l) — v in probability.

t=1

It can also be shown by direct computations that
nls = 0" E(V2) — v (3.10)

Therefore, V,2/s2 — 1 in probability. Furthermore, (3.10) implies that the Lindeberg condition

(Brown, 1971, eq. 2) is equivalent to

n~? Z E{M7I(|M;] > es:)} — 0,
t=1



where I(+) is the indicator function. Hence it suffices to verify that
E{M/I(|Mi| > es1)} — 0

for any £ > 0. To do so, we note that |B;] < B for some B > 0 and all t. Therefore,

2m+q

Z Ar(gtét—q' - 0267)

T7=0

|M;| < Uy := Bl&] +

Moreover, (3.10) implies that s, > et!/2 for small ¢ and large t. Combining these results gives
E{MZI(|My] > es,)} < E{UZI(U, > e%/?)} = E{UZI(Uo > £*t'/%)} — 0,

where the second expression is due to the stationarity of {U;}. Applying Theorem 2 (Brown,
1971) proves (3.9).

If {§;} is of infinite length, (3.9) can also be verified by following the proof of Proposition
7.3.3 (Brockwell and Davis, 1987). In fact, for any m > 0, let us define

m
G o= Y wibimj, 2= Pucos(wot + ér) + (7
j=—m
1 n—1 ,6}% )
o= onT Zzﬂjzt’", and 7" = 7cos(woj)+E(CﬁjC{n).
t=0

If so doing, we obtain, for any fixed m,
q
W2 Y N(FR = v = Sp 4 O(n?)
J=0
and
n—1
Sm =12 Z z — 5™ ~ N(0,v™)
t=0
in distribution as n — oo, where z7* := 3° A;27; and 27; is given by (3.7) with ({* in place of (;,
and where v™ := 3737 A;A407; and v7} is defined by (3.4) with autocovariances of {(;} replaced
by autocovariances of {(/*}. Since v™ — v as m — oo, then S™ — N(0,v) in distribution.

Moreover, an analogous argument as in the proof of Proposition 7.3.3 leads to
. . 1/2y=m m <. . _
Jgnoollzr_l—)sip pr{n °|F = = F 41l >e) =0

for any € > 0. The proof is then completed by applying Proposition 6.3.9 (Brockwell and Davis,
1987). &

10



REMARK 3.1 The asymptotic normality has been proved by Mackisack and Poskitt (1989) for
the simplest case where {(;} are independent and identically distributed (see also Stoica et al.,

1989). Therefore, Lemma 3.2 is an extension of their results to the case of colored noise. %

With the help of the above lemmas, we are now able to state the central limit theorem for

the sample autocovariances {f;} given by (3.1).

Theorem 3.1 Suppose that E(¢}) = ko < oo and that
oo
Zj|h]‘| < 00.
/=0

Then, {nl/;’(f'j —7;),7 =0,...,q} are asymptotically jointly normal with mean zero and covari-

ance matriz V.

ProOF. By Lemma 3.2, it suffices to show that n'/2(7, — #,) — 0 in probability as n — cco. To

do so, we first claim that
n'/?(F, —#,)— 0  in probability, (3.11)
where
n—1
7:‘,- = n_l Z ét-i-‘rét'
t=0

In fact, simple algebra gives z; = 2; + 2%; and
n—1
(7, — 7)) = nTl/? Z(5t+75t + Byt + ZigrEt)
t=0
= h+DL+13

where
Et = Z hjyt—j'
J=t+1
Using (2.1), I; can be written as

n—1 oo {471
b= o ;, 2 ;hmkw? cos{wo(t — j) + ¢} cos{wo(t + 7 ~ k) + ¢}
+ Bei—jcos{wo(t + 7 — k) + ¢}
+ Béiqr—k cos{wo(t — 7) + ¢}

+ €1—j€ipr—k]

= T+ T+ T3+ Ty

11



Clearly, we have

11

< VRESY S by <nn 1/2ﬂ2ﬂzylh =0 asn— oo,

t=0 j=t+1 j=

where H := 3" |h;|. Similarly,

[ee]

E(|Ty]) < 72 E(leo)BH Y jlhjl = 0 asn — oo,

=0
and thus T, — 0 in probability by applying Chebyshev’s inequality. In the same way, we can
show that T3 and Ty vanish in probability as well. Combining these results gives [; — 0 in
probability. The same conclusion can also be made about I and I3 by an analogous argument.
(3.11) is thus proved. Finally, we claim that n'/?(#, — #,) — 0 in probability. This can be

easily established upon noting that

n—1 t t+7r

nt/2 E(l#; —#:]) < n~1/2 Z Z Z [hjhi| E(|Ytr-kye-;i]) < n VK
t=n—71 =0 k=0

where the last inequality is due to the fact that
E(lyeys)) < K = % +28E(|eo]) + E(e3)-

The theorem is thus proved. &
REMARK 3.2 Theorem 3.1 remains valid if ¢ is random and independent of {£}. In fact,
by conditioning on ¢, Theorem 3.1 can be proved in the same way. Since the asymptotic
conditional distribution given ¢ does not depend on @, the same result holds for the asymptotic
unconditional distribution as well. &
REMARK 3.3 This theorem can be easily generalized to the case of multiple sinusoids in additive

noise. In fact, suppose that {y;} is given by

g—1
Y=Y Bucos(w,t + ) + €,
v=0
where ¢ is a postive interger, 8, and w, are constants with 8, > 0and 0 <w; < --- < w, < T,

and ¢, € (=, ] can be either constants or random and independent of the noise {¢;} given by

(2.2). Then, Theorem 3.1 still holds with v, defined by

Vip = 22{ o cos(wy, 7 ) cos(w, k) Z rccos(wur)}

T=—00

+ (IQ—-3)’I' Z ( T+] k+r‘r+] 7§‘ k)

T=—00

12



where 3,1, := B|H(w,)|. &
By a somewhat different approach, Yakowitz (1991b) have given a result similar to Theo-
rem 3.1. But in his work, only a lower bound of the asymptotic variance is provided and the

result is restricted to FIR filters.

As a result of Theorem 3.1, we can also establish the asymptotic normality for the sample

autocorrelation
pi = Tj/fo
as follows.

Corollary 3.1 Suppose that conditions in Theorem 3.1 are satisfied. Then, nl/Q(ﬁj — p;) 18

asymplotically normal with mean zero and variance vj, where p; 1= r;/ro and

vj == (pjvo0 — 2p5v05 + j;)/ 7. (3.12)

ProoF. The assertion follows from Theorem 3.1 by applying Proposition 6.4.3 (Brockwell and
Davis, 1987). o

4 AsYMPTOTIC NORMALITY OF THE CM ESTIMATOR

Applying the general results obtained in the proceeding section, we would like in this section
to establish the asymptotic normality for the CM estimators &, and &, defined in Section 2.

For this purpose, we first have

Lemma 4.1 Let {y;} be defined by (2.1)-(2.2) and assume that E(£1) < co. Suppose in addition
that

[e.e]
Jlhi(a®)| < oo.

i=0

Then, n'/?{p(a*) — p(a*)} is asymptotically normal with mean zero and variance o2, where

p(a*) is given by (2.6) with @ = o*, and o2 := v,C*(a*) with

vp = 3 {1+ 20")(pi(e")? — 407 pf(a)pfpa(07) + pha(@pfa(e)} - (41)

k=—co

13



PRrROOF. Applying Corollary 3.1 with h; := hj(a*) and (; := €(a*), we are able to obtain
n'2{p(a*) — p(a*)} — N(0,v;)  in distribution,

where v1 is defined by (3.12) with j = 1. Note that in (3.12), r¢ = 0/C(a*) where O'Z =
E(?) = 1'3., Note also that p(a*) = p§(a*) = o* = coswy. Therefore, (3.4) gives

vwo/of = S+2 Y (pi(e”))?

k=—o00
vi1/0¢ = &S+2 Y pi(a)pipa(e”)
k=—o00
oo
ofof = o254+ 3 {(ph(e") + phya(a)pi(0®)}
k=—o0c0
where 5 := (2@%/0?) 2 pi(@*) cos(wok) + & — 3. Simple algebra yields v; = o2. &

REMARK 4.1 Because of asymptotic equivalence, there are many other ways of estimating p(«a)
without changing the results in Lemma 4.1. In fact, p(a) can be taken, for example, as the

least squares estimator that minimizes

n—1 n—1
Z{?)t(a) — phi—1(e)}* + Z{@t—z(a) — ph—1(e)}*.
i=1 =1
In this case,
n—1
Z Ge—1(a){F1( @) + Gi—2(a)}
o)== . (42)
2 Z ?9?-1(“)
t=1
Some other estimators of p(a) can be found in Li and Kedem (1991). ¢

Using this lemma, we are able to obtain the following central limit theorem for the CM

estimator:

Theorem 4.1 Let {y;} be defined by (2.1)-(2.2) and suppose that E(£}) < oo. Assume further
that (H1), (H2) are satisfied and that G(a) > g > 0 for all a in a neighborhood of a*. Then,

"1/2(6% —a*) and n1/2(o§vn —wyg) are asymptotically normal with mean zero and variances

2 Vp 2 Vp
oL = and of = , 4.3
* o ya) Y y2(coswp)sin? wy (4.3)

respectively.
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Proor. Let ey(a) := p(a) — p(a). Since @, is a fixed-point of g(a), then p(d,) = @,.
Combining this with (2.5) yields

en(@y) = G(én )by — a*).

Under assumption (H2), e, () is differentiable with probability one. Therefore, we have the

Taylor expansion G(é,)(é, — a*) = e, (a*) + €] (@, )(&, — a*), or,
{G(6n) — €(@n)}(én — @) = ex(a”), (4.4)

where &, lies between o* and @&,. According to Theorem 5.1 and Corollary 5.1 (Li and Kedem,
1991), we have, almost surely, &, — oa*, and €/ (a) = p/(a) — p'(a) — 0 uniformly in a

neighborhood of a*. Therefore, by the continuity of G’(a), we obtain
G(ay) — €,(d,) — G(a®)  in probability.

Moreover, Lemma, 4.1 guarantees that n'/ %e,(a*) is asymptotically normal with mean zero and
variance Ug. The asymptotic normality of &, with 02 := 02/G?*(a*) is thus proved by combining
all these results and applying Slutsky’s theorem to (4.4). From (4.1) and the definitions of G(a)

2 = v,/v*a*). Finally, since &, = arccos &, and

and C(a), we obtain o) =

d arccos o -1

doa |por | sin we’
the asymptotic normality of &, follows from Proposition 6.4.1 (Brockwell and Davis, 1987). ¢
REMARK 4.2 The formula (4.3) shows that in order to reduce the asymptotic variances, the

filter must be chosen so as to enhance the sinusoidal signal when o takes on the true value o*.

¢

5 THE AR(2) FILTER

Consider the following AR(2) filter defined recursively by
yt(a) + 0(a)77yt—1(04) + 772%—2(&) = (t =0,1,...,n— 1)’ (51)
where 0 < < 1, and

f(a) := — Za. (5.2)




For any |a| < 2n/(1 + 7?), since |8(a)| < 2, we can alway write
8(a) = =2 cos{w(a)} (5.3)

for some w(a) € [0, 7]. It turns out that pexp{+iw(a)} are poles of the AR(2) filter defined by
(5.1). Moreover, it can be verified (Li and Kedem, 1991) that the fundamental property (2.3)
is satisfied by this filter whenever {¢;} is white noise, i.e., whenever ¢; are independent and
identically distributed with mean zero and variance o2. Therefore, in this case, the filter (5.1)

can be applied to estimate the frequency wp by using the FPI procedure (2.8) and by taking
&™) = arccos p(a™ 1) = arccos &™) (m=1,2,...). (5.4)

Here p(a) can be defined by either (2.6) or (4.2), and §;() is given by (5.1) with zero initial

values. This procedure is clearly an iterative filtering algorithm. In fact, at the mth iteration,

4 , and then calculate p(ds 3 l)) on the

basis of the output using (2.6) or (4.2). Finally, we obtain o™ by (5.4) as an estimate of wy

we first filter the sample {y;} by (5.1) with a = éx

and a{™ by (2.8) for the next iteration.

It has also been verified (Li and Kedem, 1991) that the filter (5.1) satisfies (H1) and (H2)
with C(a*) < 1. Therefore, it is guaranteed with probability one for large n that the mapping
p(e) has a unique fixed-point &, in the vicinity of o*, and that w(m) defined by (5.4) converges
monotonically to &, = arccosé&, as m — oo. Furthermore, &, is strongly consistent for
estimating wg and, according to Theorem 4.1, nl/ 2(d, — wp) is asymptotically normal with
mean zero and variance o2 defined by (4.3).

To obtain explicit expressions for o2 and o2, we first note that for the AR(2) filter (5.1),

1
(1—n?)?sin®wq

| H (wo; a”)|* =
Using the formulas given by He and Kedem (1990b) for AR(2) filters, we obtain

E{e/(a)} = Zsm2{w(a)(9 + 1)}y,

51n2{w(a)}

and

2
pi(e) = coslu(@k}t + T cotfu(a)) sinfu(e)k}rt (5.5)
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for k > 0, where w(a) is defined by (5.3). It follows by straightforward computations that

0.2

E{ef(a)} (1 — 774)(61 _ aZ)’

and, therefore, we can write

o _ L+9?
y(a®) = oLy

1-7

where v := (32/(202) is the signal-to-noise ratio (SNR) of {y;}. It is readily seen that y(a*),
the signal-to-noise ratio of the filtered data at o*, does not depend on a*. This means that
the sinusoidal signal is equally enhanced by the AR(2) filter (5.1) for any wy € (0, 7) satisfying
| coswo| < 2n/(1 + 1?).
In addition, direct but lengthy calculation of (4.1) using (5.5) yields
2

1_77 *2
v, = 1_{_772(1—01 ).

Therefore, from (4.3), we obtain

1 — 2 3 1— *2 1— 2 3 1
ol = 772 204 and o2 = 772 —. (5.6)
I+n Y 1+n%) v

Clearly, in order to achieve a small asymptotic variance, 7 should be chosen as close to 1 as

possible.

Given (5.6), a natural question is what we can learn from these formulas about the mean-
square error (MSE) E(&, —wp)? of the CM estimator &y,. Since a closed-form expression of the
MSE is difficult, if not impossible, to obtain, we would like to investigate this problem based
on a numerical experiment. First of all, it should be noted from (5.6) that o2 tends to zero as
n — 1. Therefore, it is reasonable to believe that in order for the asymptotic variance o2 /n of
Wy, to be a good approximation of the MSE, a larger sample size n is required when 1 becomes
closer to 1, as vindicated by the simulation results shown in Table 1.

For various values of  and n, Table 1 presents the estimated MSE of the normalized CM
estimator @, /@ on the basis of 100 independent realizations. Each realization was generated
from the model (2.1)-(2.2) with {e;} being Gaussian white noise, and with wy = 0.427, ¢ = 0.1,
and vy =1 (i.e., SNR = 0 dB). Figure 1 gives the corresponding curves obtained from Table 1.

To produce the CM estimates, the FPI procedure (2.8) was used in connection with j(a) given

17



Table 1: MSE of CM Estimator by FPI with AR(2) Filter (SNR=0dB)

n Asymptotic

n 0.85 0.90 0.95 0.98 0.99 0.999 Var of NLS

100 |} 7.25x107% | 3.06x107% | 1.53x10~% | 1.31x10~8 1.28x106 1.24x107 1.22x10~6
4.24%x10-% | 1.17x10-¢ | 1.36x10-7 | 8.35%x10~? 1.03x10~° 1.01x10712

300 || 1.71x10~¢ | 535x10~7 | 1.21x10~7 | 5.55x 1078 5.13x10~% | 5.01x108 4.50%x 108
1.41x107% | 391x10™7 | 4.55x10~% | 2.78x10~°2 | 3.43x10~10 | 3.38x10~13

500 || 8.97x10~7 | 2.82x10~7 | 5.22x1078 | 1.44%x10~8 1.10%x1078 1.04x1078 9.73x10~°
8.47x10"7 | 2.34x10~7 | 2.73x10~% | 1.67x10™? | 2.06x10710 | 2.03x10~13

700 || 8.29x10~7 | 2.47x10~7 | 3.91x10~% | 7.14x10~? 3.94x107° 3.28x10~° 3.54x10~°
6.05x10~7 [ 1.67x10~7 | 1.95x10™% | 1.19x10™? 1.47x10710 | 1.45x10712

900 || 5.43x10~7 | 1.67x10~7 | 2.81x10~% | 5.58x10~? 2.64x1079 1.64x107° 1.67x10~°
4.71x10~7 [ 1.30x10~7 | 1.52x10™8 | 9.28x10710 | 1.14%x10~19 | 1.13x10~13

1100 || 3.58x10~7 | 1.05x10~7 | 1.75x10~% | 3.46x10~? 1.74%x106~9 1.15%x107° 9.13x 10710
3.85x10~7 | 1.07x1077 | 1.24x10~8% | 7.59x10~10 | 9.35x10~1! | g9.22x10~14

1300 |[ 3.49x10-7 | 9.66x10~% | 1.36x10™8 | 2.08x10~? 9.09%x1071% | 6,13%x1071° [ 5.53x1010
3.26x10™7 | 9.02x10~% | 1.05x10~% | 6.42x10™10 | 7.91x10~! | 7.81x10~14

1500 || 2.31x10~7 | 7.54x10~8% | 1.39%x10-8 | 2.25%x10~? 8.08x10~10 | 3.85x10~10 [ 3.60x10~10
2.82x10~7 | 7.81x10~% | 9.09x10~? | 5.57x1071° | 6.86x10~1! | 6.76 x 1014

1700 || 2.33x10~7 | 6.83x10~8 | 1.00x10~8 | 1.35x10~° 5.55x10710 | 2.82x10710 || 2.47x10710
2.49%10~7 | 6.89x10~% | 8.02x10~? | 4.91x10~10 | 6.05x10~1! | 5.97x101*

1900 || 2.21x1077 | 6.41x10~% | 9.17x10~° | 1.34x10~? 5.12x10~10 | 2.16x10-10 || 1.77x10~10
2.23x10”7 | 6.17x107% | 7.18x10™° | 4.40x10™'° | 5.41x10~"! | 5.34x10"!*
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~LOG PLOT OF MSE FOR CM ESTIMATOR [SNR=0dRB]

22.51

20+

17.571

154

12.571

1 3 5 7 9 11 13 15 17 19

Sample Size (x100)

Figure 1: —Log plot of MSE of the CM estimator for (from the bottom) n=0.85, 0.90, 0.95,
0.98, 0.99, and 0.999. The dashed lines (— — —) are asymptotic variances of the CM estimator
for (from the bottom) n=0.85, 0.90, 0.95, 0.98, and 0.99. The solid line is the asymptotic
variance of the NLS.

by (4.2). For n = 0.85, the initial value was taken to be & = cos(0.67) (i.e., o0 = 0.67). The

FPI was terminated according to the stopping criterion: m < 20 or |z2:7(Lm) —w,ﬁm‘l)( <7 x107%,
and the resulting estimate was used to initiate the FPI for the next (larger) value of 7. The
corresponding values of o2 /(7%n) are shown in every second line.

Two conclusions can be drawn immediately from these results. (a) Given a fixed 7, the
closer it is to 1, the larger the sample size n is required for 62 /n to be a good approximation
of E(&n — wp)?. For instance, if n = 0.85, good approximations are given for n > 300; while
for n = 0.95, we need n > 1700. (b) Given a fixed sample size n, the MSE can be reduced by
increasing n. In the limiting case as » — 1, the CM estimator achieves the same efliciency as
does the nonlinear least squares (NLS) estimator. Indeed, as shown by Quinn and Fernandes

(1988), in the case of n = 1 we have
"L3/2(C:) —w ) N 2 . . . .
n —wp) — N(0,0%.g)  in distribution,

where 0%, ¢ := 12/7. Therefore, for fixed n, the asymptotic variance 0% ¢/n® of the NLS

estimator can be utilized as an approximation of the MSE, if n is very close to 1.
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Finally, it should be pointed out that the Quinn-Fernandes procedure (a special case of
the CM method using the FPI and the AR(2) filter with p(a) given by (4.2) and = 1)
requires the initial estimate to be of accuracy o(n~'/?) (see Quinn and Fernandes, 1988), and
therefore they suggested using some other methods to initiate the procedure. On the other
hand, the CM method with 7 < 1 requires less stringent initial estimates. (In Table 1, Aw :=
|L?)7(LO) — wp| = 0.18x.) In fact, the CM estimates obtained with a smaller 5 can be utilized as
initial estimates for a larger 1. Eventually, as 7 — 1, one can still achieve the same efficiency
of the NLS estimator. In conclusion, the CM method provides a flexible and efficient approach

of frequency estimation.
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